Convention is the ruler of
all,

—Piadar

Where the telescope ends, the
microscope begins. Which of
the twe has the grander
piew?

In this:chapter you-wiltfearm: . _
Y ;watousetheRailsfraﬁM& . L E .. We grow more prlrtirf/ﬁ;r
I » The M’@dﬂ**\fﬁw Controlierm R the abseveer’s sake.

exander Pupe

Phose who coennot remenmber
ihe past ave condeinned to
repeat it

—Grorpe Santayana

Lets look at the yecored.

e AlTed Emarued Smich

Al ihar wierers is thar the
mivacidons becoine the

Jarii,
Henry Miller

924 Internet & World Wide Web How to Program

24.1 Introduction

Ruby on Rails (also known as RoR or just Rails) is a framework for developing data-driven
web applications using the Ruby scripting language. A web framework is a set of libraries
and useful tools that can be used to build dynamic web applications. Ruby on Rails is dif-
ferent from most other programming languages because it takes advantage of many conv-
entions to reduce development time. If you follow these conventions, the Rails framework -
generates substantial functionality and perform many tasks for you. Ruby on Rails has
built-in libraries for performing common web development tasks, such as interacting with
a database, sending mass e-mails to clients or generating web services. In addition, Rails has
built-in libraries that provide Ajax functionality (discussed in Chapter 15), to improve the
user experience. Rails is quickly becoming a popular web development environment.

Ruby on Rails was created by David Heinemeier Hansson of the company 37Signals.
After developing Basecamp, a web application written in Ruby that allows a business to
organize multiple projects. Hansson extracted the reusable components to create the Rails
framework. Since then, many developers have enhanced the Rails framework. For more
information, visit our Ruby on Rails Resource Center at www.deitel.com/RubyOnRails.
Full documencation of the Rails Framework can be found at api. rubyenrails.org.

24.2 Ruby

The first several examples are simple command-line programs that demonstrate funda-
mental Ruby programming concepts. The Ruby scripting language was developed by
Yukihiro “Matz” Matsumoto in 1995 to be a flexible, object-oriented scripting language.
Ruby’s syntax and conventions are intuitive—they attempt to mimic the way a developer
thinks. Ruby is an interpreted language.

Ruby on Rails 923

Installing Instant Rails

To run the Ruby scripts in this chapter, Ruby must first be installed on your system. In
this chaprer we use the Instant Rails package to run our applicarions. Instant Rails incl-
udes Ruby, Rails, MySQL, Apache, PHP and other components necessary to create and
run Rails applications. PHP is used specifically for phpMyAdmin, a web interface to
MySQL. Instant Rails is a stand-alone Rails development and testing environment.

To install Instant Rails, download Instant Rails 1.7 from //rubyforge.org/frs/
?group_id=904. Once the zip file is downloaded, extract its contents to a folder on your
hard drive.

After installing Instant Rails, make sure that you stop any existing web servers on your
computer such as IIS or Apache— Instant Rails needs port 80 to be available for using
phpMyAdmin to administer MySQL. If you are not using this tool then you don’t need to
stop other web servers on your computer. To run Instant Rails, navigate to the folder
where you extracted the contents of the zip file and run InstantRails.exe. You should see a
window similar to Fig, 24.1.

If you are using Mac OS X, there is an application similar to Instant Rails called Loco-
motive. You can download Locomotive from Tocomotive. raaum.org. Linux users might
want to try LinRails (available from Tinrails.thembid.com). Anocher program useful for
Rails development is Aptana Radrails—a free, open-source IDE. Radrails can be down-
loaded from www. aptana.com/download_rails_rdt.php.

SA7 17.23:51 Instant Raix Servers clarting

Fig. 24.1 | Instant Rails application running.

Printing a Line of Text

Figure 24.2 presents a simple Ruby program that prints the text "Welcome to Ruby!".
Lines 1-2 are single-line comments that instruct the interpreter to ignore everything on
the current line following the # symbol. Line 3 uses the method puts that takes a single
parameter {a string) and prints the text to the terminal, followed by a newline. A method
can have parentheses surrounding its parameters, but this is not typical in Ruby unless they
are used to avoid ambiguity. A line of Ruby code does not have to end with a semicolon,
although one can be placed there. The puts method automatically adds a newline escape
sequence (\n) at the end of the string if one is not explicitly added.

Fig. 24.2 | Simple Ruby program. (Part | of 2.)

926 Internet & World Wide Web How to Program

Fig. 24.2 | Simple Ruby program. (Part 2 of 2.)

Running a Ruby Script

A Ruby script can be run several ways. One is to use the Ruby interpreter. To do so,
launch Instant Rails, click the mybutton in the top-left corner and select Rails
Applications > Open Ruby Console Window from the drop-down menu (see Fig, 24.3).

In the console, use the c¢d command to navigate to the directory where welcome. rb is
located, then enter ruby welcome.rb. Figure 24.4 shows the Ruby interpreter executing
the Ruby file from Fig. 24.2 in the Ruby Console window.

Ruby can also execute interactively, using IRB (Interactive Ruby). IRB interprets
Ruby code statement by statement. This is useful for debugging code and for experi-
menting with Ruby functionality. IRB can be run through Instant Rails by typing IRB in
the Ruby Console. Figure 24.5 shows simple Ruby statements interpreted in IRB.

The code after the prompt (irb(main):001:0>) shows the statement that was exe-
cuted using the Ruby interpreter in Fig. 24.4. It sends the same string to the output, then
returns the value of method puts, which is ni1, an object that represents nothing in Ruby.

HIRRLE
C VW INGOWS \system I Hemd. e
\InstantRails\rails_appedcd C:\iudhtpdsExanpies ch2a-

5w L =24, 2 -
;n:.. ::m s th24_Rubdy\Fig24 2>ruby welosss.rh

Ts-am,qx!-ml-u:n!)nhy\?huf P
. 9 .

LOAWINDIRYS

NInstantRailsrails
frbi(main’: 018> pute
Rubyt

Fig. 24.5 | Using Interactive Ruby to execute Ruby statements.

Ruby on Rails 927

The code after the second IRB prompt sends the arithmetic expression 2+2 to the
interpreter, which evaluates the expression and returns 4. The code after the third prompt
requests the class type of the number 4. The interpreter returns Fixnum—a class that rep-
resents integers in Ruby. Last, the code after the fourth prompt calls the ceil method of
4.5 to round the number up to the next whole-number value. The IRB returns 5. Type
exit to quit IRB.

Variables and Data Types in Ruby
Like most scripting languages, Ruby uses dynamic typing, which allows changes to a vari-
able’s type during runtime. There are several variable types in Ruby, including String and
Fixnum. Everything is an object in Ruby, so you can call methods on any piece of data.
Figure 24.6 invokes methods on numeric and string data.

Line 3 initializes the variable myvar. Setting myvar to 7. 5 temporarily makes it a Float
object. The highlighted portion of line 4 is an example of interpolation in Ruby. It inserts
the object value of the variable inside the braces into the string. Lines 6 and 12 invoke the

Fig. 24.6 | Method calls on numeric and string data.

928 Internet & World Wide Web How to Program

round method on the Float object to demonstrate rounding a value up or down, respec-
tively. The type of myvar changes to String in line 15. Lines 18 and 24 changes the first
letter of the first word of this String by calling its capitalize method. A list of the avail-
able methods for the Ruby types can be found at www. ruby-doc.org/core/.

Using Arrays and Hashes

Ruby provides both Arrays and Hashes to store data. Each stores a list of objects. In an
Array, indices of type Fixnum are used to select an Object from the Array. In a Hash,
Objects are mapped to other Objects in key/valuc pairs. Figure 24.7 shows an example of
using both an Array and a Hash to store information.

Line 3 instantiates a Ruby Array. Array elements can be accessed by their index
number in square brackers (line 5). You may also traverse Arrays backward by using neg-
ative number indices. For example line 6 outputs the last array element. Line 8 reverses the
clements in the Array with method reverse!. The exclamation point after the method
name is a Ruby convention indicating thart the object on which the method is called will
be modified. Method reverse without an exclamation point returns a copy of the original
array with its elements reversed. Many Ruby methods follow this convention.

Line 14 is an example of a Hash. The key/value pairs are separated by commas, and
each key points to its corresponding value using the => operator. The value of a hash ele-
ment can be found by passing in the key in square brackets, as shown in lines 16-17.

Fig. 24.7 | Arrays and hashes in Ruby.

Ruby on Rails 929

Conditionals, Loops and Code Blocks

Like any other programming language, Ruby provides selection and repertition statements.
In addition, Ruby has support for code blocks—groupings of Ruby statements that can
be passed to a method as an argument. Figure 24.8 shows a program that returns a stu-
dent’s letter grade based on a numerical grade.

Lines 3-15 of Fig. 24.8 contain a Ruby method definition. Methods must be defined
in a program before they are used. All methods start with def and end with end. Methods
do not have ro specify parameter types, but they must specify the name of each parameter.
Lines 4-14 show a nested if...e1sif...e1se statement that returns an appropriate lerter
grade based on the numeric value the method receives as an argument. If a method does
not include an explicit return statement Ruby returns the last value or variable it encoun-
ters when executing the function.

Line 17 defines a Hash of students and their numeric grades. Lines 19~21 show an
example of 2 code block. A method may have a parameter containing a block of code, such

" as the each method. The block of code appears in brackets directly after the method call.
A code block is similar to a method, in that paramerers can be passed into it. The param-
eters for a code block are given berween pipe characters (i) and are separated by commas.
The parameters are followed immediately by the code block’s statements. The code block
in lines 19-21 Gutpurs a line of text based on the key/value pair of every key in the Hash.

sived a #fletter_grade(value)}

Fig. 24.8 | Conditionals, loops and codeblocks.

930 Internet & World Wide Web How to Program

Classes
You can create your own classes and instantiate objects. Classes enable you to encapsulate
methods and data. Figure 24.9 shows a class named Point thart stores x-y coordinates.

Line 3 begins the class definition with the keyword c1ass followed by the class name.
The initialize method (lines 7-11), like constructors in other object-oriented lan-
guages, is used to declare and initialize an object’s data. When each instance of a class
mainrains its own copy of a variable, the variable is known as an instance variable. Lines
89 use the @ symbol to define the instance variables x and y. Classes can also have class
variables that are shared by all copies of a class. Class variables always begin with @@ (line
4) and are visible to all instances of the class in which they are defined. Line 10 increments
@@num_points every time a new Point is defined.

You can create new classes by inheriting from existing ones and providing your own
additional or enhanced functionality. Lines 1416 override the inherited to_s method,
which is a method of all Ruby objects. When an object is concarenated with a string, the
to_s method is implicitly called to convert the object to its string representation. Class
Point’s to_s method for the Point class returns a string containing the x-y coordinates.

Fig. 24.9 | A Ruby class.

Ruby on Rails 931

24.3 Rails Framework

While users have benefitted from the rise of database-driven web applications, web devel-
opers have had to implement rich functionality with technology that was not designed for
this purpose. The Rails framework combines the simplicity of Ruby with the ability to rap-
idly develop database-driven web applications.

Model-View-Controller

Ruby on Rails is built on the philosophies of Convention over Configuration and Don’t
Repeat Yourself (DRY). If you follow certain programming idioms, your applications will
require minimal configuration, and Rails will generate substantial portions of your web
applications for you. One of these conventions is using the Model-View-Controller
(MVC) design pattern, which splits the application into the business logic aspects handled
by the model and the design aspects handled by the view. The controller handles client
requests by obtaining information from the model and rendering it to the view.

The MVC architectural pattern separates application data (contained in the model}
from graphical presentation components (the view) and input-processing logic (the con-
troller). Figure 24.10 shows the/relationships between components in MVC.

The controller implements logic for processing user input. The model contains appli-
cation data, and the view presents the dara from the model. When a user provides input,
the controller modifies the mode! with the given input. When the model changes, the con-
croller notifies the view so that it can update its presentation with the changed data.

MVC does not restrict an application to a single view and a single controller. In a
more sophisticated program, there might be two views of a document model. One view
‘might display an outline of the document and the other might display the complete doc-
dment. An application also might implement multiple controllers—one for handling key-
board input and another for handling mouse selections. If either controller makes a change
in the model, both the oudline view and the print-preview window will show the change
immediately when the controller notifies all views of changes.

The primary benefit to the MVC architectural pattern is that developers can modify
each component individually without having to modify the others. For example, devel-
opers could modify the view that displays the document outline without having to modify
either the model or other views or controllers.

" notifies when
changes accur
te the model

Fig. 24.10 | Mode!-View-Controller architecture.

Overview
In the following examples, we show how to create a Ruby on Rails application. We show
how a controller can be used to send information to the client directly, and how a controller

932 Internet & World Wide Web How to Program

can render a view for a cleaner and more organized design. We then show how to set up
a database in a Ruby on Rails application, Finally, we show how to generate a model
to be the front end of a database in a dynamic web application.

Creating a Rails Application

The Instant Rails package comes with a full install of Rails that includes ActiveRecord,
ActionView, and ActionController. ActiveRecord is used to map a database table to an
Object. ActionView is a set of helper methods to modify user interfaces. ActionControl-
Ter is a set of helper methods 1o create controllers. To generate an emprey Rails application
in Instant Rails, click the fI] button and select Rails Applications > Manage Raifs Applica-
tions... from the drop-down menu to display the Rails Applications window. In that window
click the Create New Rails App... button. In the console that appears, type rails
Application Name at the command line to create a directory named Application Name with
a prebuilt directory structure inside. For the first example, use welcome as the application
name. Figure 24.11 shows the directory structure that is automatically generated by Rails.
The directories that we'll be primarily concerned with are app\controllers, app\modeTs,
and app\views.

* Welcome

i B Vew Favorkes Tools Help

Fig. 24.11 | Rails directory structure for a new Rails application,

Ruby on Rails 933

24.4 ActionController and ActionView

Ruby on Rails has two classes that work together to process a client request and render a
view. These classes are ActionController and ActionView.

Rails Controller

To generate a conwoller in Rails, you can use the built-in Controller generator. To do
that, open the Ruby Console window and navigate to the application directory by typing
in:

cd pathTolnstantRails\rails_apps\applicationName
To generate a controller for the welcome application type:

ruby script/generate controller Welcome

This creates several files including welcome_contraller. rb, which contains a class named
WelcomeControlter. Figure 24.12 shows a controller for our Welcome example contain-
ing only one method.

Line 3 defines a class WelcomeController that inherits from ApplicationCon-
trotler. ApplicationController inherits from ActionController: :Base, which pro-
vides all of the default functionality for a controller. The method in lines 5-7 renders text
in XHTML format to the browser using the render method

Line 6 specifies the text parameter of the render variable using a ruby symbol. Sym-
bols are identifiers preceded by a colon that have a particular value or variable associated
with them, When specifying a parameter in a method the notation is as follows:

parameter_symbol => parameter_value

" hitpiffiacalhnst: 3000fwelcame Windows fnternet Fuplier

Weltome to Ruby on Radls!

Fig. 24.12 | Simple controller that renders a message on the web page.

934 Internet & World Wide Web How to Program

Running Ruby on Rails
A Ruby on Rails application must be tun from a web server. In addition to Apache, Instant
Rails comes with a built-in web server named Mongrel, which is easy to use to test Rails
applications on the local machine. You can start the Mongrel server through Instant Rails
by going to the Ralls Application window, selecting the Welcome application from the list
and clicking the Start with Mongrel button (Fig. 24.13). ,
One important fearure of Rails is its URL mapping abiliry. Rails automatically sets up
your web application in a tree structure, where the controller’s name in lowercase is the
' directory, and the method name is the subdirectory. Since the controller name is Welcome
and the method name is index, the URL to display the text in Figure 24.12 is http://
localhost:3000/welcome/index. Notice in the screen capture of Figure 24.12 that the
URL is simply http://localhost:3000/welcome. The default action called on any con-
troller is the one specified by the method index. So, you do not need to explicitly invoke
the index in the URL to render the text in line 6.

CUNSTAN-T\rubyibiniruby. exe
Starting Rai with development snvironment...
Rails loaded.

Loading any Bails specific GemPlugins
£ignals rsad{ INT => stop (no restart).
Hongrel availabls at 0.9.9.8:3000

Use CTRL-C to stop.

E

Fig. 24.13 | Starting the Mongrel web server.

Rendering a View

When generating output, a controller usually renders a template—an XHTML document-
with embedded Ruby that has the . rhtm1 filename extension. [Noze: The next version of
Rails will use the extension .html.erb rather than .rhtml.] The embedded Ruby comes
from a library named erb. A method in a controller will automatically render a view with
the same name by default. For example, an empty hello method would look for a
hello.rhtml view to render. Fig. 24.14 is the Welcome controller with a hello method
added. The index method has been removed for simplicity.

The server_software method (line 6) is called on the request object—an object that
contains all of the environment variables and other information for that web page. The
method server_software returns the name of the server that is running the web applica-
tion. This name is stored in an instance variable that will be used by the view. Our hello
method looks for a hello. rhtm1 file in the web application’s app/views/welcome direc-
tory. Figure 24.15 shows a sample he1lo.rhtm] file.

The view consists mostly of XHTML. The erb is shown in line 14, surrounded by
<%= and %> tags. Everything between chese tags is parsed as Ruby code and formarted as
text. Ruby delimiters without an equals sign—<% %>-—represents statements (o execute as
Ruby code but not formatted as text. The @server_name variable is passed in directly from
the controller in the view. To run this application, modify the welcome.rb controller file
to look like Figure 24.14. Then go to the /app/views/welcome directory, create the -

Ruby on Rails 935

hella.rhtml file in Fig. 24.15. Run the welcome application on the Mongrel server (if it

is not already running) and direct your browser to the URL http://Tocalhost: 3000/
welcome/hello.

hello Windows Inlernet [xploser

Hello from the view!
The server you are coming from is%mngm’

Fig. 24.15 | View that displays the name of the server.

Using a Layout

Often, information spans multiple web pages that could be viewed as a header or footer.
Rails allows you to add headers and footers with a layout—a master view that is displayed
by every method in a controller. A layour can refer to a template of the method that is being
called, using yield. A layour has the same name as the controller, and is placed in the

936 Internet & World Wide Web How to Program

app/views/layouts directory. Figure 24.16 is a layout for the Welcome controller. To add
a layout to the application create a welcome. rhtm] file in the apps/views/layouts direc-
tory. To run this application, re-load the page from Fig. 24.15.

Line 9 invokes the action_name method on the controller object. This displays the
name of the method that is currently being called in the controller. Instance variables
defined in the controller are copied to both the layout and the view that the layout renders.
Line 14 is a placeholder for the view content (he11o.rhtm1 in this example} that is specific
to the action called in the controller.

Hello frem the view!
The server you are coming from is mongrel

Fig. 24.16 | Layout that isplays a greeting.

24.5 A Database-Driven Web Application

The third tier of a typical Rails application—the model—manages the data used in the app
lication. In this section, we set up a database and build a fully functional web application
using the ActionView and ActionController classes that we introduced in Section 24.4.
We create an application that allows the user to browse and edit an employee list. To create
this application’s structure, type rails Employees in the Ruby Conscle window.

Object Relational Mapping
Rails makes extensive use of Object-Relational Mapping (ORM) in its web framework.
ORM maps a table to application objects. The objects that Rails uses to encapsulate a

Ruby on Rails 97

database inherit frem ActiveRecord. By using ActiveRecord and Rails conventions, you
can avoid a lot of explicit configuration.

One ActiveRecord convention is that every model that extends ActiveRecord: :Base
in an application represents a table in a database, The table that the model represents is,
by convention, the lowercase, pluralized form of the model. For example, if there were a
messages table in your database, Message would be the name of the model representing
it. ActiveRecord follows many standard English pluralization rules as well, which means
that a Person model would automatically correspond to a peop1le table. Furthermore, if a
people table has a first_name column, the Persan model would have a method named
first_name that returns the value in that column. ActiveRecord does this for you with
no additional configuration.

Creating the Database :
Before creating a model using Act{veRecord, we need to create the database it will use. You
can do that using MySQL’s mysq1admin command. Rails will automatically look for a data-
base with the name applicationName_development to use as the development database.
To create a database for the Employees application, launch the Ruby Console and type in
mysqladmin -u root create employees_development. If no error is returned, the database
was created successfully in the mysqi/data directory of your InstantRails installation.

By default MySQL hapghepeet-aame root and no password. Mgpque sertings are dif-
ferent you can modify the appropriate fields database.ym1, located in the config folder~
in your application directory.

Creating the Employee Model

Since Rails separates the model from the rest of the application, we simply need to pur the
Employee class definition in the mode1s directory. Rails uses a generator to create the model
for the employees table, which you use by navigating to your application directory then
typing ruby script/generate model employee in the Ruby Congole. The resulr is shown
in Fig, 24.17.

The last line the console returns is create db/mi grate/001 _create_employees.rb.
We have not yer created a table employees, so Ruby automatically generates a script that
will create this table when the application launches. We can modify this script to perform
additional initial changes to the employees table. Figure 24.19 shows a modification of
001_create_employees.rb (located in your application’s db/migrate directory) that cre-
ates the table and adds chree records o it.

ActiveRecord has a special feature called Migration, which allows you to preform
database operations within Rails. Each object that inherits from ActiveRecord::

£

288

sty
ivta
oty
doal
ioal
dcal
vty

i

Fig. 24.17 | Creating a model in the Ruby Console.

938 Internet & World Wide Web How to Program

M‘!ﬁ»&wf 3 x#a mm"%-m’i‘;&!”
create_table :employees do |t] °
" t.column :first_name, :string®
t.column :last _name, :string
olumn - :job_title i

mployee.create :first_name =>

job_title => "Programmer”

Fig. 24.18 | Database migration script modified to add data to the table.

Migration must implement two methods—self.up (lines 5-18), which preforms a ser of
database operations, and self.down {lines 21-23), which reverses the database operations
performed in sel1f. up. In this case se1f. up creates the table with three columns and adds
data to it, and se1f.down deletes the table. Line 6 calls the create_table funcrion passing
as a parameter a code block, inside the do, containing the table’s column names and types.
Lines 12—-17 use ActiveRecord’s built in create method to add data wo the Employees
table. ActiveRecord has built-in functionality for many create, retrieve, update, and
destroy methods—known in Rails as CRUD. These methods represent the trivial opera-
tions that you would wanrt to do with a darabase.

We can execute the migration using Ruby’s rake command. To do so open up the
Ruby Console, navigate to your application’s directory and type rake db:migrate. This
command will call the se1f.up method of all the migrations located in your db/migrate
directory. If you ever want to roll back the migrations you can type in rake db:migrate
VERSION=0, which calls each migration’s se1f.down method. Specifying a version number
other than 0 will call the self.down method of all the migrations whose number is greater
then the version number.

Common Programming Error 24. |

If the code that comes after the creation of the table in the self.up is erroneons, the migration
will fail, and will nor be able to execute again because the table will alveady exist. Also, Rails
will not have marked the migration as successfully completed, so the version will still be O and
the migration cannot be rolled back. One way to prevent this problem is to force the table to be
dropped every time before creating it. Another solution is spliving up the migration into smaller
discrete migrations, one to create the table and another to insert data in the table.

Ruby on Rails 939

Because our model will never be modified by the application, we do not need to add
any functionality to it. Figure 24.19, which represents the employee. rb file located in the
app/Mode1s directory, contains all the code thar is needed to integrate the employees dara-
base table into the application.

Fig. 24.19 | Generated code for an Employee model.

Employee Controller

Next, create the controller with the ruby script/generate controller employees
command as shown in Section 24.4. Figure 24.20 shows the example controller for the
Employee application. Line 4 calls the scaffold method. This is a powerful tool that
automatically creates CRUD functionality. It creates methods such as new, edit and 1ist
so you don’t have to create them yourself. It also defines default views for these methods
that are rendered when each method is called. You can override the default functionality
by defining your own methods. If you override all the CRUD methods you can delete the
scaffold method. When you override 2 method, you must also create the corresponding
view. Since we will not modify the new method created by the scaffold you can see the new
method’s view with the URL http://localhost:3000/employee/new {Figure 24.21).
Line 7-9 override the 1ist method. Line 8 queries the database and returns a list of all of
the EmpToyee objects, which gets stored in an @employees instance array. This data will be
passed to the view.

The 1ist View .

The Tist template is rendered by the 1ist method f-om the EmployeeControlter. Code
for the 1ist template is shown in Fig. 24.22. This file should be placed in your applica-
tion's app/views/employee directory. While most of it is just standard XHTML, lines
14-17 contain Ruby code that iterates through all the employees in the @employees array
instance variable, and outputs each employee’s first and last name (line 16). A for state-
ment like this in a 1ist view is common in database-driven web applications.

“#imethod Tist = .

@employees = Employee.find(:all).
class Empﬁ'mm?&
S e AT S e

10 end # er-

A

Fig. 24.20 | Employee controller provides all of the functionality for the application.

940 Internet & World Wide Web How to Program

Fig. 24.21 | View of the new action when generated by the scaffold.

List of Employees

1. . Sewe Groem
2. Meg Gald
3. Jom sy

Fig. 24.22 | A view that displays a list of employees.

Ruby on Rails 941

24.6 Case Study: Message Forum

Our next example uses Ruby on Rails to create a message forum website. Message forums
enable users to discuss various topics. Common features of message forums include discus-
sion groups, questions and answets and general comments. To see some popular message
forums, visit messages. yahoo.com, web. eesite.com/forums and groups.geogle.com. In
this example, users can post messages to several different forums, and administrators of the
message forum site can create and delete forums.

Design

For our message forum application, we need a table containing all of the messages. This
table will be called messages and will contain attributes such as id, title, author, e-mail,
created_on (the date the message was created) and forum_id (the id of the forum
to which the message belongs). In addition, we need a table of all the available forums.
This table, called forums, will contain attributes such as d, name, administrator and
created_on (the date the forum was created).

In our message forum application, we want to have the functionality to create and
delete forums, but we don’t want everyone who uses our application to be able to do this.
Therefore, we will also have a users table, which contains the username/password combi-
nations of all the application’s administrators.

Before we implement this design we must create the empty application calied mes-
sageboard and the database for this application. Type in rails Messageboard and then
mysqladmin -u root create messageboard_development in the Ruby Console.

24.6.1 Logging In and Logging Out

Use the mode1 generator to generate the User model by typing ruby script/generate
model User into the Ruby Console {from the Messageboard directory). Next, create the
table that will be associated with the model. To do that, modify the migration created by
the model generator to set up the users table and add some data to it. Figure 24.23 is the
001_create_users.rb migration (from the db/migrate directory) which sets up the user
table.

The create_table function call (lines 6-9) specifies the table’s columns. By default
a primary key 1d column is created, so it is not included here. Lines 7-8 create the name
and password columns with appropriate types. Note that the name has a Timit of 11 char-
acters. Line 11 adds data to the table. To execute this migration type rake db:migrate in
the Ruby Console.

Fig. 24.23 | Database migration script modified to add data to the table. (Part | of 2.)

942 Internet & World Wide Web How to Program

i gmd # method se1F.down
"zlfl . emi # class I:raat:eﬂsers

Flg 24.23 | Database migration script modified to add data to the table. (Part 2 of 2.)

= Common Programming Error 24.2

ﬁ Creating a columm without explicitly speaﬁmg « limit on lmgz‘h will cause Rails to truncate the
o data entered into the database with database-defined limits.

Since the users tablc never changes, nothing needs to be specified in the User model,
but one still needs to exist. This will allow the controller 1o access a User as an
ActiveRecord. Figure 24.24 shows the empty model for the users table.

Next, we need to provide user creation, field validation and user logout functionality
through the use of a controller (Fig. 24.25). Create this controller by typing ruby script/
generate controller user. When a user logs in, we will keep track of that User object in
a session variable—a variable that maintains information across multiple pages of a2 web
application. The purpose of the admin method (lines 5-7) is to pass a blank user object
into the admin page, which will get filled with information, then render the admin. rhtm
template. The validate method (lines 10-21) checks the user model to determine

. D vahdate that user mﬂ sts
i L . def validate

- 1, L # find a user with the correct name and password
ﬂ . @user = User.find. by.name_ and”password(params{ :user 1[0 :name]
133 params[:user][:passwcrd] 3

3

Flg 24 25 l UsersContro'ITer prowdes vahdatlon funct:onahty forthe table (Part | of2 }

Ruby on Rails 943

redirect to admin. ac

store the.user in a- Sassion variabl B
“"forums”™, ractioh => “index" g

Fig. 24.25 | UsersControlter provides validation functionality for the table. (Part 2 of 2.)

whether the username exists, then redirects the application to the next action based on the
result of that check.

Rails allows us to generate methods dynamically to serve a specific purpose. Lines 12-
13 call the find_by_name_and_password method, which searches the model with the name
and password, passed as a parameter.

The validate method assigns to an instance variable named @user (line 12) the value
of the User that was returned by the find_by_name_and_password method. If no such
User exists, the client is redirected to the admin page and asked to log in again (line 16).
If the User does exist, a session variable is created (line 18), and line 19 redirects the client
to the index of the forums controller, which we create in Section 24.6.4. The Togout
method (lines 24—27) uses the reset_session method to delete all the user’s session vari-
ables, forcing the user to sign in again to use administrative options.

s Performance Tip 24.1

| Storing full objects in the session is inefficient. The user object is one of the rare exceprions,
because it doesn’t change very often and is frequently needed in web applications that manage
the stare information for unigue clients.

Method admin’s view is a simple login form. The template is shown in Fig. 24.26. It
asks the user for a name and password using the text_field (line 6) and password_field
(line 9) helpers, then sends the information to the validate method when the user clicks
Sign In.

F. 24.26 | Login form s to send data to the user controller. (Part 1 of 2.)

944 Internet & World Wide Web How to Program

Fig. 24.26 | Login form used to send data to the user controller. (Part 2 of 2.)

Rails helpers are methods that generate XHTML content for the view. The
password_field helper method generates a text field that masks the text inside it. Both
text_field and password_field specify a model and the column. This information is
used to determine the validation properties for each column when validating the text typed
into these fields. When the user clicks the submit button defined in line 10, the form_tag
method (line 4) automatically generates a Hash, where the keys are the names of the input
fields and the values are what the user entered, and sends it to the validate action. The
link to the validate action is specified by the action option. To display this action, run
the Mongrel server and navigate your browser to http://1ocalhost;3000/user/admin,

We define the user controller’s template in Fig. 24.27. Because the user controller
has only a single view 1o render, we could have simply include this XHTML in the view.
The benefit of a template is tha it allows us to easily add more views in the future that are
all based on the same template and adhere to Ruby on Rails’ DRY (Don’t Repeat Yourself)
philosophy. Line 9 displays the current action in the title bar. Line 12 is the placeholder
for the content of the action’s view.

Fig. 24.27 | Display the name of the current action in the title bar. (Part | of 2.)

Ruby on Rails 943

Fig. 247 “ Dihe name of the current action in the title bar. (Part20f 2)

24.6.2 Embellishing the Models

Several methods must be added to the model so that it can be modified from the applica-
tion. These methods are all defined by ActiveRecord.

Mossage Model

First, we must create an empty Message model by typing ruby script/generate model
Message in the Ruby Console. Before we make any change to the model we must create
the messages table, Figure 24.28 is the migration that creates the messages table and adds
data to it. To run this migration, navigate to the messageboard directory and type rake
db:migrate.

Fig. 24.28 | Database migration script modified to add data to the table.

946 Internet & World Wide Web How to Program

The create_table function call (lines 6-13) specifies the columns of the table. Lines
7-12 create the title, author, created_on, email, message and forum_id columns with
appropriate variable types and Jength limits. Lines 15-20 add data to the table. Rails fills
the created_on column value automatically when a new row is created. To apply the
migration, type rake db:migrate in the console window.

Figure 24.29 shows the Message model that encapsulates the messages table in the
database. Line 4 invokes the belongs_to method, which defines an association with the
forums table that can be used to access elements of the forums table. This method will
allow the Message to access the forum to which the given Message belongs simply by
calling a method named forum on the Message. This is known as an association method.

Lines 7-9 are examples of validators that can be 2pplied to an object that inherits from
ActiveRecord. These validations occur when the save method is called on a message
object in an attempt to store it in the database. If the validations are successful, then the
object is saved to the database and the method returns true. If the validations fail, an
Errors object associated with the Message object is updated and the method returns
false. The method validates_presence_of ensures that all of the fields specified by its
parameters are not empty. The method validates_format_of matches all of the fields
specified by its parameters with a regular expression, The regular expression in line 9 rep-
resents a valid e-mail address. This regular expression can be found in the Rails framework
documenration at api . rubyonrails.org.

Fig. 24.29 | Message model containing validation and initialization functionality.

Forum Model

Next, create an empty forum model by typing in ruby script/generate medel forum,
Then create the forums table in a similar fashion to messages and users. Figure 24.30 is
the Migration that sets up the messages table.

The create_table function call (lines 6-10) specifies the columns of the table. Lines
7-9 create the name, administrator and created.on columns with appropriate variable
types and length limits. Lines 12-16 add data to the table. To apply the migration, type
in rake db:migrate.

The model for the forums table (Fig. 24.31) looks similar to the model for the mes-
ages table. We can create an association method that allows a Forum to access every Mes-
ssage thar is associated with it. Line 4 shows the has_many method, which will create a
method called messages for every Forum object. The messages method will return an array
of all the messages in the Forum.

Ruby on Rails 947

Fig. 24.30 | Database migration script modified to add data to the table.

Fig. 24.31 | Forum model that includes validation and initialization functionality.

When a forum is deleted, all of thar forum’s messages should also be deleted. Line 4
sets the dependent parameter of the has_many miethod to :destroy to ensure that when a
forum is destroyed all the messages thar are associated with it are destroyed as well.

24.6.3 Generating Scaffold Code

Now that the user can log in and out of our application, we need to create the messages
and Forums views and controllers. Since much of this code is standard CRUD, we can use
the Rails scaffold generator by typing ruby script/generate scaffold message and
ruby script/generate scaffold forum in the Ruby Console. The scaffold generator
creates the scaffold code that would be generated using the scaffold method in the con-
troller. When using the scaffold method, notice that the controller name and the view
directory are both pluralized forms of the name, rather than the singular form that the
model generator and controller generator would create.

948 Internet & World Wide Web How to Program

24.6.4 Forum Controller and Forum Views

The ForumsController (Fig. 24.32), which was initially generated as part of the scaffold-
ing, handles all incoming requests from the client. The index, 1ist, new, and delete
methods are all responsible for rendering a view, while the create and destroy methods
are responsible for processing incoming data and then redirecting to another action. We
will not use the edit or show methods so you may delete the . rhtm1 view files assaciated
with them.

The verify method call in lines 4-5 is edited scaffold code, which ensures a post
request is used to send data to the server for each request that modifies the database.
Whenever a method modifies a database, the arguments should be from a post so that they
don’t show up in the URL. The :only argument specifies which actions this verification
should be applied (create and destroy in this case). If a call to create or destroy is not
made via a post request, line 5 redirects the request to the Tist action.

Fig. 24.32 | ForumsController implements CRUD functionality. (Part | of 2.)

Ruby on Rails 949

Fig. 24.32 | ForumsControlier implements CRUD functionality. (Part 2 of 2.)

Method index {line 8-11) redirects the client to the 1ist method (lines 14-16),
which obtains a list of forums from the database to be displayed on the page. The new
method (lines 19-26) checks whether the user has privileges to create a new forum. If not,
lines 2122 display an etror and redirect the user to the index action. The hash called
flash in line 21 is used to display messages in the view. F1ash is a special type of session
storage that is always automatically cleared after every request to the controller, If the user
has privileges, line 25 creates a new instance of the forum object which is initialized with
data from the user input. ‘

The create method (lines 29-39) is similar to the scaffold code, but differs in chat
the administrator attribute of the forum being saved must be the name of the user who is
logged in. Line 33 attempts to save the forum, and either renders a template if the method
returns false (line 37}, or redirects 1o the Tist method and updates the flash object if
the method returns true (lines 34-35). The delete method (lines 42-50) sets up the dele-
tion operation by finding all the forums created by the user currently logged in. Once the
user picks a forum to delete in the view, the destroy method (lines 53-58) destroys the
forum specified by the user (line 55) and re-displays the list (line 56}.

List View

Figure 24.33 is the template that is rendered by the 115t method from the Forum control-
ler. [Note: We replaced the auro-generared 1ist. rhtm] from the scaffolding]. This is also
the template rendered by the index method. Line 10 uses the 1ink_to method to create a
link with the name of the forum and the 1ist action of its messages, which we build in
Section 24.6.5.. Lines 12—13 contain a conditional statement which make the forum iral-
icized for five minutes after it has been created by using the minutes.ago method of the

950 internet & World Wide Web How to Program

Loggad In As usert: Log Out

Deitel Message Forums

Available Forums

Ruby On Bails
Interpet and Workd Wide Web: 4th £dition

Forum Managenmient

> Agd 2 Forym
o Delete a Foram

=
Fig. 24.33 | Template for the list action that displays a list of forums.

Fixnum class. The if statement in lines 17-24 displays the XHTML in lines 19-23 only if
there is a user logged in.

New View
Figure 24.34 shows the template for the Forum controller’s new method. This is code gen-
erated by the scaffold. Lines 4-7 create a form that is rendered to the page, and indicate

Ruby on Rails 951

Fig. 24.34 | Template for a new action that adds a forum to the forums table.

that the action create will be called when the Create button is pressed. This template ren-

ders a partial—a block of HTML and embedded Ruby code stored in another file and ins-

erted directly into the document. A partial allows the same block of code to be used across
multiple documents. In this example, line 5 renders the partial named form, which inserts

the file _form. rhtm1 at that line of code. A partial filename always begins with an under-

score.

Line 6 uses the submit_tag method to create a submic button that when clicked will
create a Hash with the form’s fields as keys and the user’s input as values. Line 9 uses the
Tink_to function to allow the user to go back to the forums list by redirecting the client
to the 1ist action of the forum controiler. '

The partial in Fig. 24.35 renders the input text field for the form. The administrator
and created_on fields will be gencrated on the server, so they've been deleted from the
scaffold’s code. The created_on field will be automatically set to the time when the forum

_is created. The administrator field will be set by the controller.

Logged In As user?: Log out

H New forum

Name

E ;
Back

Fig. 24.35 | Partial that contains a form used to add a new forum. *

952 Internet & World Wide Web How to Program

Delete View

The delete view (Fig. 24.36) is not generated by the scaffold, so we create it ourselves.
It is similar to create in thar it renders a form, but uses the collection_select method
to display for that administrator the list of available forums to delete. The
collection_select rakes five parameters—the type of object to be selected, the field
which the options are to be grouped by, the collection from that to obtain the list of
objects, the field that will be sent once an option is selected and the field that is to be dis-
played on the screen for each option.

5

Loggad In As userl: Log Qut

Fig. 24.36 | Template for Delete action used to delete a forum,

Forum Layou:

Figure 24.37 is the layout that renders every template for the ForumsController. It has all
the necessary XHTML, and contains the login/logout text (lines 13-25). Line 29 auto-
matically renders the template of any action that uses the template.

Fig. 24.37 | Layout that displays the logged-in user for every Forums action. {Part | of 2.)

Ruby on Rails 953

raction = 'admin’ %

Fig. 24.37 | Layout that displays the logged-in user for every Forums action. (Part 2 0f 2.)

If the user is logged in (line 14), lines 16-18 display the username on the page and
use the 1ink_to method to enable the user to log out by redirecting to the Togout action.
Otherwise, lines 21-23 allow the user to log in, using the Tink_to helper method to redi-
rect the user to the admin action. Lines 2627 display any error messages or success mes-
sages that result from user interactions.

24.6.5 Message Controller and Message Views

The MessagesController (Fig, 24.38) is similar to the ForumsController, except that its
Tist method (lines 8—22} doesn’t list all of the messages—it lists only the ones with the
specified forum_id that is passed in as a URL parameter from the Forum 1ist view. Line
10 updates the session variable to match the URL parameter. If no parameter value is
specified, the forum_id session variable is used. If neither of these exists, line 14 displays
an error and line 15 redirects the client to the 1ist action of the forum controller. The
find method which is called on Message (line 18-19) specifies that the messages should be
ordered by their created_on dates in descending order. Line 20 also calls the find method
to obtain the forum object, which we will need to add messages to the forum.

The create method (lines 30—40) replaces the method generated by the scaffold. Line
31 obtains the id of the forum to which the message should be added and line 32 obtains
the new message entered by the user. If the message s added to the database successfully,
lines 35-36 set the appropriate message to be displayed in the view using the f1ash object
and redirect the client to the 1ist action. Otherwise, line 38 redirects the client o the new
action, prompting the user to enter the message again.

954 Internet & World Wide Web How to Program

Fig. 24.38 | MessagesController that implements CRUD functionality.

List View

The 1ist view (Fig. 24.39) for the Message controller is similar to the 1ist view for the
Forum controller, except that more information is displayed in the messages 11st view. It
uses CSS to format the output. In this view, every message object acts like a Hash—passing
a column name as a key returns the corresponding value in the message object. To obtain
an a column’s value, include the attribute method’s name in square brackets after the name
of the object. For each message in the forum, line 12 displays the title, line 13 displays the
author and line 19 displays the message’s text. At line 14, the Ruby Time object that is ret-
urned by the message[' created on’] is formatted using the Ruby Time class formatting

Ruby on Rails 955

down Internet {xplorer

=

1, hitp:{focahost: 3000/me

welcome to the Fourth Edition
by Bob Green at 06/0172006 at 04:07PM
We hope you enjoy the book.
New message | bt focums
LIER

Fig. 24.39 | Template for the 19st action that displays a list of messages.

options. Lines 24-26 use the 1ink_to method to allow the user to create a message in the
current forum or to go back to the list of the forums.

New View

The new template for the Message coneroller is omirred here because it is scaffold code that
is nearly identical to the new template for the Forum controller. The partial shown in
Fig. 24.40 for the messages form is also similar. Lines 8, 12 and 16 use the text_field
helper method to create fields for specifying the title, author and email. Line 20 uses
the text_area helper method to create an input area of a certain size, to be used to input
the message. These fields are validated when the Message model’s save method is called.
If the modet does not deem the data valid, line 3 displays the error messages.

956 Internet & World Wide Web How to Program

tAussages new Windows intoraet Lxplores

18 heepocakbst:2000f

New message

Title

Author
Email

Messags

5252 k %‘

Fig. 24.40 | Form that allows the user to enter a new message.

Message Layour

Figure 24 .41 shows the layour used to render all Message templates. Line 10 invokes the
scaffold.css style sheet, which we changed slightly to improve our page’s presentation.
To make the style sheet available for import it must be placed in the public/stylesheets
directory of the application. When a forum has been modified, line 14 displays the appro-
priate message.

Ruby on Rails 957

Fig. 24.41 | Message layout that links a style sheet and displays a message.

We have now implemented the basic functionality of the forum application. To test
this application execute it on Mongrel and browse to http://1ocalhost: 3000/ forums.
To test the administrative privileges of the forum go to http://localhost:3000/user/
admin and login with the username userl and password 54321. In the next section we'll
add Ajax capabilities to make our forum more responsive.

24.6.6 Ajax-Enabled Rails Applications

Adding Ajax functionality to Rails applications is straightforward. Rails includes a Java-
Secript library called Prototype that contains easy-to-use cross-browser Ajax functions.
Figure 24.42 is the modified layout for the forum file, which now links the prototype
library to the application. For the application to have the correct look, make sure you insert
the modified style sheet, which can be found in our examples folder, into the public/
stylesheets directory of the application.

Fig. 24.42 | Forums layout that uses the default JavaScript libraries. {Part | of 2)

958 Internet & Worlid Wide Web How to Program

Fig. 24.42 | Forums layout that uses the default JavaScript libraries. (Part 2 of 2.)

Line 11 links in the JavaScript library using the javascript_include_tag helper
method. The defaults parameter tells javascript_include_tag to link all the defaults
JavaScript Rails libraries including Prototype and Script.aculo.us. The rest of the layout
file is the same as in the non-Ajax version.

Figure 24.43 changes the Forum object’s Tist view to perform Ajax requests rather
than load a new page. Now, whenever ‘the user clicks a forum’s name, the page loads the
forum’s messages to the right of the forums list with a partial page update.

Fig. 24.43 | Displaying a list of messages without reloading the page. (Part 1 of 2.)

Ruby on Rails 959

ajaxComponent”

Kot Currently togged In: Log In

Deitel Message Forums
C

Welcoms to the Fourth £dition
by Beb Green at 06/01/2006 at 04:07PM

We hope you enjoy the baok.
’ New mesga]e

Fig. 24.43 | Displaying a list of messages without relcading the page. (Part 2 of 2.)

The key change is lines 9-12, which have been changed to call the 1ink_to_remote
helper method instead of the 1ink_to helper method. The 1ink_to_remote method
allows us to link to JavaScript that we included in the layou file. By specifying the ur1 and
update parameters inside the Tink_to_remote method we are telling Rails to convert these
tags into prototype Ajax.Updater objects tha will updare the page asynchronously. The
url argument (line 10) specifies the controller in which to look for the action. The
action parameter (line 11) specifies the action o invoke. The forum_id parameter {line
11} specifies the id to pass to the action. Line 12 specifies currentForum as the id of the
placeholder div in the page that needs to be updated. Lines 26-27 define the placeholder
div element where the list of messages will be inserted. The rest of the code is the same as
in the non-Ajax version of this application.

In similar fashion, we modify the 11st and new views of the message object, to be able
to add a message to a forum without reloading the page. First we include all the default
JavaScript libraries in the message. rhtml layour file (not shown here), ensuring all the
views in the message object have access to Prototype. After that we modify all the calls to
other actions to be asynchronous. Figure 24.44 is the updated 1ist.rhtml.

Fig. 24.44 | Forum that allews the user to add a message on the same page. (Part | of 2.)

960 Internet & World Wide Web How to Program

Not Currently Loggad In: ¢

Deitel Message Forums

Welcome to the Fourth Edition
by Bob Green at 0670172006 at 04:07PM
We hope you enjoy the bock.

L

Nat Currantly Legged In: Eng In

Deitel Message Forums

Title

Author

Email
Message

Ruby on Rails 961

Lines 22-24 use the 1ink_to_remote helper method to allow the user to add new
messages without reloading the page. The ur1 is the new action, which returns the form
and the placeholder to update is currentForum, defined in the 1ist.rhtml view of the
forum object (Fig, 24.43). The new view is also modified, so that once the user submits the
new message, the updated div named currentForum is shown without reloading the page.
Figure 24.45 shows the modified new. rhtm1,

Lines 3-7 have been changed to use the form_remote_tag helper method, which
redirects the client to the next action without reloading the page. Once the user clicks the
Submit button, generared by submit_tag (line 6), the form will generate a Prototype
Ajax.Updater object that will send the dara to the action specified and display the result
in the specified placeholder. This placeholder is set to currentForum, the same element
inside which this forum wilt be displayed. When the user finishes adding the new message,
a new forum will replace this form, without reloading the page. Lines 8-9 provide the user
a way to cancel the new-message operation, in which case the original forum displays.

Not Currently Logged In: Log in

Deitel Message Forums

Title [Ruby

Author [Jsmes Blue

Emaii |alsancore@deitel.com
Masgsage

{Chqck cuz the Chapter on
[Ruby on Rails!|

Fig. 24.45 | Adding a new message without reloading the page. (Part | of 2.)

962 Internet & World Wide Web How to Program

Mot Currently Logged In: Lpg In

Deitel Message Forums

Message was successfully created,

Ruby
by James Blue at DGIODIZBJ? at 02:09PM
Check out the Chapter on Ruby on Railg!

Waelcome to the Fourth Edition
by Bob Grean at 06/01/2006 at 04:07PM

We hope you enjoy the baok.
Mew mestage

Fig. 24.45 | Adding a new message without reloading the page. (Part 2 of 2.)

24.7 Script.aculo.us

Visual Effecrs

Rails includes the Script.aculo.us JavaScript library, which allows you to easily create vis-
ual effects similar to those in Adobe Flash and Microsoft Silverlight. The library provides
many pre-defined effects, as well as the ability to create your own effects from the pre-
defined ones. The following example demonstrates many of the effects provided by this
library. Figure 24.46 demonstrates the Fade effect. When the user clicks the link above the

P

WAL,

Fig. 24.46 | Scriptaculo.us's Fade effect.

Ruby on Rails 963

image, the effect named in the link will be applied to the image. Once you start the appli-
cation with Mongrel, open http://localhost:3000/scriptaculou s_demo/ in your web
browser.

To create this application, first type rails scriptaculous_demo in the Ruby console.
Next, create the controller by executing

ruby script/generate controller ScriptaculousDemo

In app/controllers/scriptaculous_demo_controller.rb (Fig. 24.47), add the index
method. This method sets to 0 the currentEffect instance variable, which keeps track of
which effect the application is currently playing. Next, add the P1ayEffect method (lines
4-6), which will be called when the user clicks to show the next effect. '

Now, create application.rhtml (Fig. 24.48) in app/view/1ayouts. This acts as the
defaule layout. Content from render :partial commands replaces line 13.

Next, create index. rhtm1 (Fig, 24.49) in app/views/scriptaculous_demo. This is
the application’s default view. The "1ink" div (lines 3-8) contains a Tink_to_remote
(lines 4-7) that initially is labeled 'Shrink’, calls playEffect with a effect_index
parameter of 0, updates itself and plays an effect on the before event. The effect is created
using the visual_effect method (lines 6-7). The parameters of this method call are the
effect name, the name of the element the effect should apply to, the duration and the

Fig. 24.47 | Default view for Script.aculo.us demo.

Fig. 24.48 | Script.aculo.us Demo controller.

964 Internet & World Wide Web How to Program

Fig. 24.49 | Default layout of Script.aculo.us demo.

location in the queue. The queue is set to end so that any new effects will be played after
all the others are complete. The image in line 11 must be in the public/images directory.
The playEffect method (lines 7-10, Fig. 24.47) sets the currentEffect instance
variable to the effect_index parameter, then renders the 1ink view in the 1ink div. In
app/views/scriptaculous_demo/_link.rhtml (Fig. 24.50), the application demon-
strates several Script.aculo.us effects by using nested i statements to check the current-
Effect, apply it, then increment currentEffect after each effect with the effect_index
parameter. The link text corresponds to the name of the effect the link activates.

Fig. 24.50 | 1ink partial view for Script.aculo.us demo. (Part | of 3.}

Ruby on Rails 965

Fig. 24.50 | 1ink partial view for Script.aculo.us demo. {Part 2 of 3.}

966 Internet & World Wide Web How to Program

Fig. 24.50 | 711ink partial view for Script.aculo.us demo. (Part 3 of 3.)

" Ruby on Rails 967

Other Script.aculo.us Features

The Script.aculo.us libraty also brings other features to Rails. It provides drag-and-drop
capability through the draggable_element and drop.receiving_element methods. A
live example of this can be found at demo. script.aculo.us/shop.

Script.aculo.us also provides the sortable_element method which allows you to
describe a list that allows the user to drag and drop list items to reorder them. A live
example of this can be found at demo.script.aculo.us/ajax/sortable_elements.

Another intereresting capability is the text_field_with_auto_complete method,
which enables server-side auto completion of a text field. A live example of this can be
found at demo. script.aculo.us/ajax/autocompleter.

Flickr Photo Viewer with Effects
The Script.aculo,us library’s effects are useful for adding 2 deskrop-like feel to a web page.
In the following example (Fig. 24.51), the user can search for photos with specific tags and
can specify the number of images for each search to return, The application uses the
Script.aculo.us sliding effect to show when the thumbnails for the specified tags have fin-
ished loading from Flickr. The application also uses the grow effect when the user clicks
an image to display the full-size version of the image.

After creating the F1ickrPhotoviewer application, you must install the Flicke library
for Ruby. This library can be installed by execuring gem insta1? flickr in the Ruby con-
sole. More information about this library is available at redgreenblu. com/f1ickr/. Once

Fig. 24.51 | Flickr Photo Viewer showing search results for bugs.

968 Internet & World Wide Web How to Program

insralled, you must configure the library to use your own Flickr API key. You can sign up
for a free APl key at www.flickr.com/services/api/misc.api_keys.html. Once you
receive your APl key, you must replace the key in £1ickr. rb with your own. If you are using
Instant Rails, f1ickr. rb will be locared in the Instant Rails directory, in the folder If you
are running Mac OS X, or otherwise have installed Ruby system-wide, this file will be
harder 1o find. If you cannot locate it with a normal search in Mac OS X, open Terminal
and use find / -name f1ickr.rb 1o locate it. The API key to replace should be located at
tine 57, in the initialize method. Finally, you must tell the application to include the
Flickr librarv by adding require 'flickr' to the end of config/environment. rb.

Create the controller with ruby script/generate controller flickr. In app/
views/f1ickr/index.rhtml (Fig. 24.52), we create the application’s main view. Be sure
to copy the flickrPhotoviewer.css file from this chapter's folder into the public/
stylesheets/ directory. Lines 15-31 contain a form_remote_tag element thar imple-
ments the application’s photo tag search functionality. Line 17 creates a BlindDown
visual_effect for the thumbs div (line 32) when the search action is complete. Lines
18219 create the corresponding BYindUp visual_effect for the Toading div (lines 28—
29}. Lines 20-21 hide the 1oading div on failure and success events, respectively. The
fullsizelmage div (line 33) will be populated later with an img element.

<= form_remote_tag :url’

:update => "thumbs', :

:complete = visual effect(

:before = { visual_sffect(: J
%(Element.show(‘loading’)) 3,

:failure = %(Element h'lde(:

—-—-ﬁ—m-—

SEBNBESENYRSS

S e P ¥
Fig. 24.52 | Main view for Flick Photo Viewer. (Part | of 2.)

Ruby on Rails 969

3t
32

33
“~“
38

SIEM P

Fig. 24.52 | Main view for Flickr Photo Vlewer (Part 20f2)

The controller located at app/controllers/f1ickr_controller.rb (Fig. 24.53)
handles the search action called by the form in line 15 of Fig. 24.52 and the fullsize-
Image action called by the Vink_to_remote in lines 3-9 of Fig. 24.54. In the search
method, line 6 creates the f1ickr object using the F1ickr class we installed previously.
Lines 7-9 use the f1ickr object to populare thumbs with photos, supplying as arguments
the tags and numImages values from the corresponding text_field_tags in lines 24 and
26 of Fig. 24.52. The fullsizeImage method (lines 13-15) takes the imageURL param-
cter’s value and uses it to set the currentURL variable.

The thumbs view (Fig. 24.54) defines each thumbnail as a 1ink_to_remote with an
image_tag as the link's contents. The source of the image is retrieved from the thumbs coll-
ection thar was passed by line 8 of Fig. 24.53. The first index, 0, specifies the image size to
be the smallest provided by Flicks. In lines 5-6 of Fig. 24.54, we specify thac the ur1 should

‘render :partial > L ST
:collection a5 --chkr photos{ .tags => params[:

e Tink_to_remote image_tag(thumbs sizes[0]{ source 1.
:class =» "{image”),
curl = {zactionss ‘fu]isizetmage
rimageURL => thumbs.sizes{ 3 1['source’ 1 },
;update => "fullsizelmage",
1SUCCESS => v1sua1_effect(grnw, 'fu11s1ze1mage

. 5 e p@%@@i&%w?g
Fig. 24 54 | thumbs view of Flickr photo viewer.

970 Internet & World Wide Web How to Program

activate the ful1sizeImage action and pass an imageURL parameter. This parameter is set to
the source of the image’s large version. Lines 8-9 apply the grow visual_effect to full-
sizelmage.

The fullsizeImage view (Fig. 24.55) fills the fullsizeImage div in line 33 of
Fig. 24.52 with an image_tag. The source of this image is set to the currentURL variable.
Try the program out with different tag searches and numbers of images.

Fig. 24.55 | fullsizeImage view of Flickr Photo Viewer.

24.8 Web Resources

www . deditel.com/Ruby/

waww . deitel.com/RubyOnRails/

The Deitel Ruby and Ruby on Rails Resource Centers contain links ta some of the best Ruby and
Rails resources on the web. There you'll find categorized links to forums, conferences, blogs, books,
open source projects, videos, podcasts, webcasts and more. Also check out the tutorials for all skill
levels, from introductory to advanced.

o cvery mcthad ina mﬂtmﬂzr

m mewmwmwmmwmm ; S

] !mkmlsmmmwsr}mbuﬁt-mwbmmmd Mongtel wh;d: lseasytousetn test Rails

 applications on the local miachine.’ < :

. Whmmmamhﬁhmﬂbm&mn,' :

i . embedded Ruby thac has the . rivin} filename exicnsion.. .
'+ The request object contzins she enyitonment; v’;nﬁilﬁ.nmf qdu:: infermanon for a web page.

* Exb (mmmy}dm.mm&mm«; =eug:,:mimuxmmpamias Ruby
eodcandfarmamdasw S

e A serofkulrytags mxiwu; an nquais 'u"f %—r@tmnts_mmenm to execute as Ruby -
code but not krmmd astext,’

e XHTML docmnem with

‘;' A lzyout can genctat’e 3 temphtc fomspee;ﬁc method
¢ (ORM) that maps a datsbase to appli-

\:fgkg:c'drq:l: :Base in an app-

' the lowérc’:as:, pluraiued '

genesitor : by typmg ruby script/

application directory.

aliows you 10 pesform . o

L Raifé s @ genieranor | cmereﬂwc' :
: semrmdelemp1emmt}w8ubym :
e mmimxwdobmimaw tuse called
5 . database aperations within] Rails., ...
"+ ActiveRecord as builc-in functionality mme czeane. _
knawmnRaz}sasCRUD REASES £ Tl

e 'We can execute the: mxgmmnmmgﬁuby’s rake cemmaﬁdby:ypmg in rake db:migrate, which
will call the self.up method of aiithcmagmons located iix your db/migrate directory.

,-uﬁdz.tc and destroy .m.et.hods

‘ _ '_ e lfmmwmwmﬂbmkzhemgrmmmmwcm rzke db mqrate VERSTON<0, which

calls cach migration’s se1¥.down methos -

..« Thescaffold method s a puwerful tool that aammucnﬂy creates CRUD ﬁwmenality It creares
mc:hodssmh as new; ¢ edit and 1t 80 youdont havc to create them yourself.

g ~S¢cﬁon2£6€am&udy.M s Forut

e ‘Vahdam&mwﬂlbccaﬁ:dwhm&mdaubmxmcdiﬁed,mbeapphed tomub]ecr chat
inhetits from ActiveRecord. _
* The metbad vali dates,presencLof ensures t:hat ali the ﬁeidxspec:ﬁed by its parameters are not
L empry. : ‘ : .
T hcmeeiwivahdates.famtmf mhmaﬂ the ﬁeids apecff‘md by its. pamncters with a regu-
. The 1mwmahaé mme&wlinkmfi it BCHHC __=_imhc oﬂcranépnssargumms 10 it.

. Apams!isablockafHTMLandanbed&a&Ruby ;
disectyis

in another Fle and mscrted

Rubyon Rails 973

server-side autqcém

Terminology - _‘ '
" ActionControlier
,za&fzg'imviu S

- “App1 jcationCont roller

association . -
'-;Wﬁf@-cmﬂzfr 5

‘ drop_recxevx ng..n‘im#t

dynmxic

i Errors Ob]ect

" “escape sequence |
- Find_al

< Fixnum

'Htﬁxt_ﬁa‘ldmethod o
cpexeFi ﬂd._y‘ith..mm«;mﬁp‘l:te mcd‘md
*ta.,f?metha& .
Gem: U gt date N
Hash S T f-‘-'__'w"l*?ﬂtes._fnmt_of
initialize _ Deentomii e B 0 validatescpresenceof
© . instance vatiable Lot validations '

‘Instant Rails S verify, :

= wcbframewmk

.. IRB
- layout’ e -_mbsewer :
Tink_to method o mbmm o

o Vipk_to_remote method

